19 research outputs found

    Optimization of Flow Allocation in Asynchronous Deterministic 5G Transport Networks by Leveraging Data Analytics

    Get PDF
    This research work was supported in part by the Euro- pean Union’s Horizon 2020 Research and Innovation Program under the “Cloud for Holography and Augmented Reality (CHARITY)” Project under Agreement 101016509, and 5G- CLARITY Project under Agreement 871428. It is also partially supported by the Spanish national research project TRUE5G: PID2019-108713RB-C53.Time-Sensitive Networking (TSN) and Deterministic Networking (DetNet) technologies are increasingly recognized as key levers of the future 5G transport networks (TNs) due to their capabilities for providing deterministic Quality-of-Service and enabling the coexistence of critical and best-effort services. Addi- tionally, they rely on programmable and cost-effective Ethernet- based forwarding planes. This article addresses the flow alloca- tion problem in 5G backhaul networks realized as asynchronous TSN networks, whose building block is the Asynchronous Traffic Shaper. We propose an offline solution, dubbed “Next Generation Transport Network Optimizer” (NEPTUNO), that combines ex- act optimization methods and heuristic techniques and leverages data analytics to solve the flow allocation problem. NEPTUNO aims to maximize the flow acceptance ratio while guaranteeing the deterministic Quality-of-Service requirements of the critical flows. We carried out a performance evaluation of NEPTUNO regarding the degree of optimality, execution time, and flow rejection ratio. Furthermore, we compare NEPTUNO with a novel online baseline solution for two different optimization goals. Online methods compute the flow’s allocation configuration right after the flow arrives at the network, whereas offline solutions like NEPTUNO compute a long-term configuration allocation for the whole network. Our results highlight the potential of data analytics for the self-optimization of the future 5G TNs.Union’s Horizon 2020, 1010165095G-CLARITY 871428TRUE5G: PID2019-108713RB-C53

    Deep Reinforcement Learning based Collision Avoidance in UAV Environment

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have recently attracted both academia and industry representatives due to their utilization in tremendous emerging applications. Most UAV applications adopt Visual Line of Sight (VLOS) due to ongoing regulations. There is a consensus between industry for extending UAVs’ commercial operations to cover the urban and populated area controlled airspace Beyond VLOS (BVLOS). There is ongoing regulation for enabling BVLOS UAV management. Regrettably, this comes with unavoidable challenges related to UAVs’ autonomy for detecting and avoiding static and mobile objects. An intelligent component should either be deployed onboard the UAV or at a Multi-Access Edge Computing (MEC) that can read the gathered data from different UAV’s sensors, process them, and then make the right decision to detect and avoid the physical collision. The sensing data should be collected using various sensors but not limited to Lidar, depth camera, video, or ultrasonic. This paper proposes probabilistic and Deep Reinforcement Learning (DRL)-based algorithms for avoiding collisions while saving energy consumption. The proposed algorithms can be either run on top of the UAV or at the MEC according to the UAV capacity and the task overhead. We have designed and developed our algorithms to work for any environment without a need for any prior knowledge. The proposed solutions have been evaluated in a harsh environment that consists of many UAVs moving randomly in a small area without any correlation. The obtained results demonstrated the efficiency of these solutions for avoiding the collision while saving energy consumption in familiar and unfamiliar environments.This work has been partially funded by the Spanish national project TRUE-5G (PID2019-108713RB-C53)

    Dynamic Resource Provisioning of a Scalable E2E Network Slicing Orchestration System

    Get PDF
    Network slicing allows different applications and network services to be deployed on virtualized resources running on a common underlying physical infrastructure. Developing a scalable system for the orchestration of end-to-end (E2E) mobile network slices requires careful planning and very reliable algorithms. In this paper, we propose a novel E2E Network Slicing Orchestration System (NSOS) and a Dynamic Auto- Scaling Algorithm (DASA) for it. Our NSOS relies strongly on the foundation of a hierarchical architecture that incorporates dedicated entities per domain to manage every segment of the mobile network from the access, to the transport and core network part for a scalable orchestration of federated network slices. The DASA enables the NSOS to autonomously adapt its resources to changes in the demand for slice orchestration requests (SORs) while enforcing a given mean overall time taken by the NSOS to process any SOR. The proposed DASA includes both proactive and reactive resource provisioning techniques). The proposed resource dimensioning heuristic algorithm of the DASA is based on a queuing model for the NSOS, which consists of an open network of G/G/m queues. Finally, we validate the proper operation and evaluate the performance of our DASA solution for the NSOS by means of system-level simulations.This research work is partially supported by the European Union’s Horizon 2020 research and innovation program under the 5G!Pagoda project, the MATILDA project and the Academy of Finland 6Genesis project with grant agreement No. 723172, No. 761898 and No. 318927, respectively. It was also partially funded by the Academy of Finland Project CSN - under Grant Agreement 311654 and the Spanish Ministry of Education, Culture and Sport (FPU Grant 13/04833), and the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (TEC2016-76795-C6- 4-R)

    NarrowBand IoT Data Transmission Procedures for Massive Machine Type Communications

    Get PDF
    Large-scale deployments of massive Machine Type Communications (mMTC) involve several challenges on cellular networks. To address the challenges of mMTC, or more generally, Internet of Things (IoT), the 3rd Generation Partnership Project has developed NarrowBand IoT (NB-IoT) as part of Release 13. NB-IoT is designed to provide better indoor coverage, support of a massive number of low-throughput devices, with relaxed delay requirements, and lower-energy consumption. NB-IoT reuses Long Term Evolution functionality with simplifications and optimizations. Particularly for small data transmissions, NB-IoT specifies two procedures to reduce the required signaling: one of them based on the Control Plane (CP), and the other on the User Plane (UP). In this work, we provide an overview of these procedures as well as an evaluation of their performance. The results of the energy consumption show both optimizations achieve a battery lifetime extension of more than 2 years for a large range in the considered cases, and up to 8 years for CP with good coverage. In terms of cell capacity relative to SR, CP achieves gains from 26% to 224%, and UP ranges from 36% to 165%. The comparison of CP and UP optimizations yields similar results, except for some specific configurations.This work is partially supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (Projects TIN2013-46223-P, and TEC2016-76795- C6-4-R), and the Spanish Ministry of Education, Culture and Sport (FPU Grant 13/04833)

    Asynchronous Time-Sensitive Networking for Industrial Networks

    Get PDF
    Time-Sensitive Networking (TSN) is expected to be a cornerstone in tomorrow’s industrial networks. That is because of its ability to provide deterministic quality-of-service in terms of delay, jitter, and scalability. Moreover, it enables more scalable, more affordable, and easier to manage and operate networks compared to current industrial networks, which are based on Industrial Ethernet. In this article, we evaluate the maximum capacity of the asynchronous TSN networks to accommodate industrial traffic flows. To that end, we formally formulate the flow allocation problem in the mentioned networks as a convex mixed-integer non-linear program. To the best of the authors’ knowledge, neither the maximum utilization of the asynchronous TSN networks nor the formulation of the flow allocation problem in those networks have been previously addressed in the literature. The results show that the network topology and the traffic matrix highly impact on the link utilization.This work has been partially funded by the H2020 research and innovation project 5G-CLARITY (Grant No. 871428), national research project TRUE5G: PID2019-108713RB-C5

    5G Infrastructure Network Slicing: E2E Mean Delay Model and Effectiveness Assessment to Reduce Downtimes in Industry 4.0

    Get PDF
    This work has been partially funded by the H2020 project 5G-CLARITY (Grant No. 871428) and the Spanish national project TRUE-5G (PID2019-108713RB-C53).Fifth Generation (5G) is expected to meet stringent performance network requisites of the Industry 4.0. Moreover, its built-in network slicing capabilities allow for the support of the traffic heterogeneity in Industry 4.0 over the same physical network infrastructure. However, 5G network slicing capabilities might not be enough in terms of degree of isolation for many private 5G networks use cases, such as multi-tenancy in Industry 4.0. In this vein, infrastructure network slicing, which refers to the use of dedicated and well isolated resources for each network slice at every network domain, fits the necessities of those use cases. In this article, we evaluate the effectiveness of infrastructure slicing to provide isolation among production lines (PLs) in an industrial private 5G network. To that end, we develop a queuing theory-based model to estimate the end-to-end (E2E) mean packet delay of the infrastructure slices. Then, we use this model to compare the E2E mean delay for two configurations, i.e., dedicated infrastructure slices with segregated resources for each PL against the use of a single shared infrastructure slice to serve the performance-sensitive traffic from PLs. Also we evaluate the use of Time-Sensitive Networking (TSN) against bare Ethernet to provide layer 2 connectivity among the 5G system components. We use a complete and realistic setup based on experimental and simulation data of the scenario considered. Our results support the effectiveness of infrastructure slicing to provide isolation in performance among the different slices. Then, using dedicated slices with segregated resources for each PL might reduce the number of the production downtimes and associated costs as the malfunctioning of a PL will not affect the network performance perceived by the performance-sensitive traffic from other PLs. Last, our results show that, besides the improvement in performance, TSN technology truly provides full isolation in the transport network compared to standard Ethernet thanks to traffic prioritization, traffic regulation, and bandwidth reservation capabilities.H2020 project 5G-CLARITY 871428Spanish Government PID2019-108713RB-C53TRUE-5

    Reduced M2M Signaling Communications in 3GPP LTE and Future 5G Cellular Networks

    Get PDF
    The increase of machine-to-machine (M2M) communications over cellular networks imposes new requirements and challenges that current networks have to handle with. Many M2M UEs (User Equipment) may send small infrequent data, which suppose a challenge for cellular networks not optimized for such traffic, where signaling load could increase significantly and cause congestion over the network. This paper evaluates current proposals to manage small transmissions over the Long Term Evolution (LTE) cellular network. We also propose a new Random Access-based Small IP packet Transmission (RASIPT) procedure for M2M UEs small data transmissions. Its main feature is data transfer without establishment of Radio Resource Control (RRC) connection to reduce signaling overhead. In our design, we assume a Software Defined Networking-based architecture for 5G system. When compared with current LTE scheme, our procedure reduces significantly the signaling load generated by M2M UEs small transmissions.This work is partially supported by the Spanish Ministry of Economy and Competitiveness (project TIN2013- 46223-P), FEDER and the Spanish Ministry of Education, Culture and Sport (FPU grant 13/04833)

    Modeling and Dimensioning of a Virtualized MME for 5G Mobile Networks

    Get PDF
    Network function virtualization is considered one of the key technologies for developing future mobile networks. In this paper, we propose a theoretical framework to evaluate the performance of a Long-Term Evolution (LTE) virtualized mobility management entity (vMME) hosted in a data center. This theoretical framework consists of 1) a queuing network to model the vMME in a data center and 2) analytic expressions to estimate the overall mean system delay and the signaling workload to be processed by the vMME. We validate our mathematical model by simulation. One direct use of the proposed model is vMME dimensioning, i.e., to compute the number of vMME processing instances to provide a target system delay given the number of users in the system. Additionally, the paper includes a scalability analysis of the system. In our study, we consider the billing model and a data center setup of Amazon Elastic Compute Cloud service and estimate the processing time of MME processing instances for different LTE control procedures experimentally. For the considered setup, our results show that the vMME is scalable for signaling workloads up to 37 000 LTE control procedures per second for a target mean system delay of 1 ms. The system design and database performance assumed imposes this limit in the system scalability.This work was supported in part by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (project TIN2013-46223-P) and in part by the Spanish Ministry of Education, Culture, and Sport under FPU Grant 13/04833

    Implementación de mecanismos de mitigación de tormentas de broadcast en redes de área local mediante Redes Definidas por Software

    Full text link
    [ES] El uso de Ethernet como tecnologı́a de red pararedes corporativas se justifica por su bajo coste y facilidadde configuración y mantenimiento. Sin embargo, estas redesno son muy escalables, debido en parte a las inundacioneso tormentas de broadcasts, que afectan al rendimiento tantode los dispositivos de red como finales. Para mitigar elimpacto de las inundaciones por broadcast, se ha previstoutilizar técnicas de filtrado y caché en distintos nodos dela red. Sin embargo, el paradigma de Redes Definidas porSoftware permite definir nuevas aproximaciones, gracias ala capacidad de reprogramar la red de forma centralizaday flexible que proporciona. En este trabajo se aborda laimplementación de una red de área local con soporte parafiltrar algunos paquetes broadcast mediante la utilizaciónde Redes Definidas por Software. Esta solución permitirı́adesplegar redes de área local más amplias, adecuadas paralos requisitos de redes corporativas. Para ello, se describe eldesarrollo de filtros para varios protocolos de red, su imple-mentación en el controlador OpendayLight, y la evaluacióndel rendimiento obtenido.Este trabajo esta parcialmente financiado por el Ministerio de Economía, Industria y Competitividad y el Fondo Europeo de Desarrollo Regional FEDER (proyectos TEC2016-76795-C6-4-R y TIN2013-46223-P).Valera Muros, B.; Prados Garzón, J.; Ramos-Munoz, JJ.; Navarro-Ortiz, J. (2017). Implementación de mecanismos de mitigación de tormentas de broadcast en redes de área local mediante Redes Definidas por Software. En XIII Jornadas de Ingeniería telemática (JITEL 2017). Libro de actas. Editorial Universitat Politècnica de València. 216-223. https://doi.org/10.4995/JITEL2017.2017.6585OCS21622

    Link-Level Access Cloud Architecture Design Based on SDN for 5G Networks

    Get PDF
    The exponential growth of data traffic and connected devices, and the reduction of latency and costs, are considered major challenges for future mobile communication networks. The satisfaction of these challenges motivates revisiting the architecture of these networks. We propose an SDN-based design of a hierarchical architecture for the 5G packet core. In this article we focus on the design of its access cloud with the goal of providing low latency and scalable Ethernet-like support to terminals and MTC devices including mobility management. We examine and address its challenges in terms of network scalability and support for link-level mobility. We propose a link-level architecture that forwards frames from and to edge network elements (AP and routers) with a label that identifies the APs through which the terminal is reachable. An SDN local controller tracks and updates the users' location information at the edge network elements. Additionally, we propose to delegate in SDN local controllers the handling of non-scalable operations, such as broadcast and multicast messages, and network management procedures.This work is partially supported by the Spanish Ministry of Economy and Competitiveness (project TIN2013-46223-P), and the Granada Excellence Network of Innovation Laboratories (projects GENIL-PYR-2014-20 and GENIL-PYR-2014-18)
    corecore